M1. (a) 3800
allow 1 mark for 2000
allow 1 mark for 1800
if neither of above scored, allow correct substitution for 1 mark $(800 \times 2.5)+(600 \times 3)$
if moments have been calculated incorrectly, allow 1 mark for adding their two moment values correctly
newton metres or Nm
do not allow nm or NM
(b) as the girl increases her distance (from the pivot) the clockwise moment increases
(F must increase) as the anticlockwise moment must increase
so (the anticlockwise moment) is equalled / balanced by the clockwise moment
or
so resultant / overall moment (on the board) is zero accept to balance / equal the moments to balance the board is insufficient

M2. (a) (i) \mathbf{X} at the centre of the lifebelt
measuring from the centre of \boldsymbol{X}, allow 2 mm tolerance in any direction
(ii) any two from:
if X is on vertical line below the hanger (but not at centre) can gain the first point only
below the point of suspension accept '(vertically) below \boldsymbol{Y} '
at the centre (of the lifebelt)
accept 'in the middle'
(because) the lifebelt / it is symmetrical
or (because) the mass / weight is evenly distributed
(b) Nm or newton metre(s) accept Newton metre(s) do not accept any ambiguity in the symbol ie NM, nM or nm 750
$($ moment $)=$ force \times (perpendicular) distance (between line of action and pivot)
or $($ moment $)=500 \times 1.5$ gains 1 mark
(c) Quality of written communication:
for 2 of the underlined terms used in the correct context
any three connected points from:
low(er) centre of mass / gravity
or centre of mass / gravity will be close(r) to the wheels /axle / ground
(more) stable
or less unstable
less likely to fall over
accept 'less likely to overturn’
do not accept 'will not fall over'
the turning effect / moment (of the weight of case) is less
or so less effort is needed to hold the case ignore references to pulling the case
so the pull on her arm is less

M3. (a) 810000
newton-metres / Nm
(b) any three from:
ignore references to force throughout

- their weight / mass can be altered / adjusted
- so that the crane remains stable
allow does not topple
- so that the (total) clockwise moment equals the (total) anticlockwise moment
do not allow just 'moments are equal'
- because not all containers are the same weight / mass
do not allow 'not all containers are the same size / volume'
- because not all containers will be / need to move the same distance (from the crane)
- to keep the centre of mass (of the upper crane and container) in/ above the base of the tower
- so that the crane remains in equilibrium/balanced

M4. (a) point at which its mass (seems to) act or point at which gravity (seems to) act accept ... its weight acts accept correct statements if the intent is clear e.g.. .. if suspended, the centre of gravity will be directly under the point of suspension
e.g.... (if the object is symmetrical), the centre of gravity is on the or an axis (of symmetry) do not credit just 'it is a point'
(b) The answer to this question requires good English in a sensible order with correct use of scientific terms. Quality of written communication should be considered in crediting points in the mark scheme
maximum of 4 marks if ideas not well expressed
any five from:
clamp (steel) rod (horizontally)
no marks if method quite unworkable
hang plastic / sheet by rod through (one) hole
hang plumb line from rod
mark ends of plumb line on the sheet and use the ruler to draw a straight line
repeat with other hole
centre of mass is where the lines cross
check by balancing at this point
maximum of 3 marks if no 'repeat with other hole'
(c) (i) (turning) effect or moment
force
distance
all three correct
accept weight
accept length
(ii) 17.6
allow 44×0.4 or 0.4×44 for 1 mark

Nm or newton metre(s)
do not accept N / m or N/cm
1760 Ncm gains all 3 marks

M5. (a) (i) turning effect
accept turning force
accept force x distance
(accept symbols only if correctly defined)
do not accept newtons x metres
(ii) stop apparatus falling over
accept holds the stand in place accept make it safer/stable
references to balanced / equilibrium are insufficient
(iii) as x increases y increases
in same proportion / ratios
allow both marks for they are directly proportional
or
a specific example eg doubling y, doubles x
allow both marks for a correct answer giving figures
eg they increase in the ratio of 1 to 7
allow for 1 mark positive correlation
(iv) the centre of mass of the ruler is at the axis of rotation
(b) 108
allow 1 mark for correct substitution ie 240×0.45
newton metres / Nm
symbols must be correct
for full credit the unit must be consistent with the numerical answer

M6. (a) moment or torque do not credit 'leverage’
(b) $4(2)$
either 0.20×20 (1) or allow '400' (1)
(c) use a longer spanner
or increases the perpendicular distance / length
or 'fit a pipe over the (end of the) spanner (to lengthen it)'
note 'lever' refers to 'spanner'
note change the . . . (0)
ignore references to wider / larger nut
use a greater force / pull
either order

M7. (a) any two from:

- inversely proportional
- as the load gets biggerthe (maximum safe) distance gets less
allow 'as the mass increases the distance decreases' accept an unspecified response e.g. 'big load at a short distance' for (1)
- \quad load \times distance $=60(\mathrm{kNm})$
(b) yes, because $30 \times 2=60(2)$
accept for (1) a correct but insufficiently explained response e.g. 'yes because it's safe'
accept for (2) a correct response which is sufficiently explained
e.g. 'yes, because $60(\mathrm{kNm})$ at 1 metre is safe and $30(\mathrm{kNm})$ is half the load at twice the distance
do not accept 'no' and do not accept just 'yes'
do not accept 'yes, because 30 is between 24 and 40 and 2 is between 2.5 and 1.5'
do not accept 'the crane/ cable may break' or other dangers
(c) the crane may/will topple over/fall over/forward
(d) results of experiments on this mobile crane accept any unambiguous indication

